Mathematical modeling of local problems: impact on reasoning and transfer

Authors

DOI:

https://doi.org/10.64747/63djye85

Keywords:

mathematical modeling, reasoning, transfer of learning, open data, basic education

Abstract

This study examines the effect of a local-problem, model-eliciting instructional sequence on mathematical reasoning and transfer among lower-secondary students in Guayaquil, Ecuador. We employed a quasi-experimental cluster design with MEAs and control groups, pretest–posttest measures, and follow-up. The intervention combined context-rich tasks using open data, metacognitive scaffolding with modeling logs, and formative assessment using analytic rubrics. Primary outcomes were (a) latent scores on a Mathematical Reasoning Test (PRM) calibrated through IRT, and (b) a transfer index (success on near and far transfer tasks). The final sample comprised n = 889 students across 30 classes. A multilevel ANCOVA (controlling for pretest and covariates) indicated a significant intervention effect on reasoning (β = 0.24, SE = 0.05, p < .001; d ≈ 0.38). Multilevel logistic models for transfer showed absolute increases of +10.7 percentage points (near; OR = 1.63, 95% CI [1.32, 2.02]) and +12.3 points (far; OR = 1.88, 95% CI [1.45, 2.44]). At follow-up, effects persisted with attenuation (β = 0.18; +9.6 points for far transfer). We observed improvements in argument quality and multiple representations, with an average implementation fidelity of 0.83. Findings indicate that territory-anchored mathematical modeling strengthens reasoning and enables transfer to novel contexts, with scaling feasibility across public and subsidized schools. We recommend institutionalizing MEAs as signature tasks in units on proportional reasoning, functions, and data analysis; adopting rubrics and formative feedback; and sustaining spaced practice to consolidate gains. Methodological transparency (IRT, HLM, DiD) and open data foster replicability and policy uptake.

References

Ackermans, K., Rusman, E., Nadolski, R., Specht, M., & Brand‑Gruwel, S. (2021). Video‑enhanced or textual rubrics: Does the Viewbrics’ formative assessment methodology support the mastery of complex (21st century) skills? Journal of Computer Assisted Learning, 37(3), 810–824. https://doi.org/10.1111/jcal.12525

Angrist, J. D., & Pischke, J.‑S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press. https://doi.org/10.1515/9781400829828

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Review, 109(2), 145–170. https://doi.org/10.1037/0033-295X.109.2.145

Black, P., & Wiliam, D. (2018). Classroom assessment and pedagogy. Assessment in Education: Principles, Policy & Practice, 25(6), 551–575. https://doi.org/10.1080/0969594X.2018.1441807

English, N., Robertson, P., Gillis, S., & Graham, L. (2022). Rubrics and formative assessment in K‑12 education: A scoping review of literature. International Journal of Educational Research, 113, 101964. https://doi.org/10.1016/j.ijer.2022.101964

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Psychology Press. https://doi.org/10.4324/9781410605269

García Cabrera, V. A., Guaman Chimbo, M. E., Rea Minchalo, C. B., & Vega Pérez, J. A. (2025). Impacto de los medios tecnológicos en el aprendizaje de estudiantes de educación básica media en contextos urbanos de Ecuador. Horizonte Científico International Journal, 3(2), 1–10. https://doi.org/10.64747/zvkjx362

Greefrath, G., Hopfenbeck, T. N., Lingefjärd, T., & Ludwig, M. (2022). Mathematical modelling and discrete mathematics: Opportunities for modern mathematics teaching. ZDM–Mathematics Education, 54(7), 1723–1737. https://doi.org/10.1007/s11858-022-01339-5

Hartmann, L. M., Schukajlow, S., Niss, M., & Jankvist, U. T. (2024). Preservice teachers’ metacognitive process variables in modeling‑related problem posing. The Journal of Mathematical Behavior, 76, 101195. https://doi.org/10.1016/j.jmathb.2024.101195

Hidayat, R., Adnan, M., Abdullah, M. F. N. L., & Safrudiannur. (2022). A systematic literature review of measurement of mathematical modeling in mathematics education context. Eurasia Journal of Mathematics, Science and Technology Education, 18(5), em2108. https://doi.org/10.29333/ejmste/12007

Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and applications (3rd ed.). Routledge. https://doi.org/10.4324/9781315650982

Imbens, G. W., & Wooldridge, J. M. (2009). Recent developments in the econometrics of program evaluation. Journal of Economic Literature, 47(1), 5–86. https://doi.org/10.1257/jel.47.1.5

Lakens, D. (2017). Equivalence tests: A practical primer for t‑tests, correlations, and meta‑analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177

Murillo Cortez, C. A., Muñoz Velastegui, T. del R., Cercado Erazo, M. Á., & Villegas Fajardo, G. A. (2025). Desempeño académico y formación técnica en Guayaquil: Un análisis desde la educación básica hasta el bachillerato técnico. Horizonte Científico International Journal, 3(2), 1–13. https://doi.org/10.64747/tk2xjq24

OECD. (2023). PISA 2022 results (Volume I): The state of learning worldwide. OECD Publishing. https://doi.org/10.1787/53f23881-en

Pan, S. C., & Rickard, T. C. (2018). Transfer of test‑enhanced learning: Meta‑analytic review and synthesis. Current Opinion in Behavioral Sciences, 20, 20–27. https://doi.org/10.1016/j.cobeha.2018.02.004

Sandefur, J. (2022). Mathematical modelling in school mathematics: Perspectives and next steps. ZDM–Mathematics Education, 54(7), 1687–1698. https://doi.org/10.1007/s11858-022-01399-7

Schukajlow, S., Kaiser, G., & Stillman, G. (2023). Modelling and applications in mathematics education—State, trends and issues. Educational Studies in Mathematics, 114(2), 219–245. https://doi.org/10.1007/s10649-023-10265-6

Söderström, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10(2), 176–199. https://doi.org/10.1177/1745691615569000

van der Linden, W. J. (Ed.). (2017). Handbook of item response theory: Volume 3—Applications. Chapman & Hall/CRC. https://doi.org/10.1201/9781315117430

Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in the teaching and learning of mathematical modelling (pp. 427–437). Springer. https://doi.org/10.1007/978-94-007-0910-2_42

Downloads

Published

2025-12-16

How to Cite

Aguirre Quinde, C. C., Pozo Mejía, A. M., Robayo Gonzalez, C. A., & Rodríguez Vallejo, D. F. (2025). Mathematical modeling of local problems: impact on reasoning and transfer. Horizonte Cientifico International Journal, 3(2), 1-18. https://doi.org/10.64747/63djye85